Prognostic Factors in CLL/SLL What to Use and What Do They Tell Us About Pathogenesis?

George Ioannidis Cambirdge Lymphoma Forum Nov 10th 2009

Clinical Course of B-CLL

iWCLL Therapy Guidelines

Active or progressive disease defined as

- 1. Progressive BM failure
- 2. Massive/symptomatic splemomegaly (6cm LCM)
- 3. Massive (>10cm) or progressive lymphadenopathy
- 4. Progressive lymphocytosis: LDT<6mo or LDT₅₀ <2mo
- 5. AIHA/AITP poorly responsive to corticosteroids
- Constitutional symptoms: Wt loss 10% <6mo, Fever 38°C > 2w, Unexpained sweats >4w, Fatigue PS=<2

Prognostic Factors in CLL

- What can prognostic factors tell us?
 - Predict natural history of disease
 - Richters transformation
 - Pattern of disease
 - Patient information
 - Guide Therapy
 - When to start therapy
 - What therapy to choose
 - How do they predict prognosis?
 - Information about disease biology

CLL Clinical Staging Systems

Binet

Stage	OS (mo)
A. Hb>10, PI >100, <3 LN	144
B. Hb >10, Pl > 100 3+ LN	60
C. Hb <10 &/or Pl < 100	24

Rai

Stage	OS
0. Lymphs >15 (5) x 10 ⁹ /l	>180
1. Lymphadenopathy	108
2. Spleen +/- Liver +/LNs	60
3. Hb < 11g/dl	24
4. Platelets < 100 x10 ⁹ /l	24

Prognosis in CLL: LDT

- Lymphocyte doubling time
 - < 1 year median survival 36 months
 - > 1 year median survival not reached
 - Not independent of clinical stage

Slow progression

Molica & Alberti, Cancer 1987:60;2712

Serum markers: CLL4

		5yr PFS	р	5yr OS	р
β 2 Μ	Low	24.9	0.001	72.8	<0.0001
	High	12		38.8	
sTK	Low	24.5	0.004	62.5	0.01
	High	12.6		50.6	
sFL	Norm.	27.5	0.03	66.2	0.04
	Abn.	15.5		53.2	
sCD23	Low	23.7	0.1	61.7	0.04
	High	13.6		50.4	

Prognosis: Vh gene Mutations

Somatic hypermutation in CDR of V_H and V_L genes normally occurs in GC after antigen exposure.

T cell help through CD40/40L mediated signals plays a central role in triggering SHM and class switching

Hamblin et al 1999

Vh3-21 Prognosis

Thorselius et al. Blood (2006) vol. 107 (7) pp. 2889-94

Prognosis : Cytogenetics

CD38: an independent prognostic marker in CLL

ZAP-70

Prognostic factors

- What to do in everyday practice?
 - At diagnosis
 - Nothing required but patients often wish to have the information
 - Academic value in collecting information
 - Cytogenetics/FISH, V genes, CD38 (ZAP70)
 - Prior to (each) therapy
 - FISH +/- cytogenetics
 - TP53 deletion (mutations)
 - 11q deletions (ATM mutations)

How do prognostic factors influence outcome in CLL?

- Correlation with:
 - Disease progression
 - Increase in size of leukaemic clone
 - Tissue infiltration
 - Immune dysregulation
 - Response to therapy

In-vitro and in-vivo kinetics

In-vivo deuterated water labelling

Messmer et al 2005

Proliferation Centres

Number of proliferation centres correlates with prognosis

In-vitro Model of Pseudofollicle

Contact with activated T cells causes proliferation of CLL cells

Patten et al. Blood (2008) vol. 111 (10) pp. 5173-81

Activated T-cells Upregulate CD38

Activated T-cells Upregulate CD38

CD38hi cells are primed for in-vitro proliferation

Patten et al. Blood (2008) vol. 111 (10) pp. 5173-81

CD38 expression on B-CLL cells is higher in bone marrow than peripheral blood

Patten et al. Blood (2008) vol. 111 (10) pp. 5173-81

CD31 staining

CD20: Red

CD31: White

x200

CD38+ Patten et al. Blood (2008) vol. 111 (10) pp. 5173-81

x200

Pseudofollicle microenvironment

H&E

CD23: Red CD3: Green Ki67: Blue CD31: White

Patten et al. Blood (2008) vol. 111 (10) pp. 5173-81

Summary

CD38 influences outcome through effects on the tumour microenvironment that involve interaction with nonmalignant cells including T-lymphocytes and the vascular endothelium

CD49d & CD38

- Both independent negative prognostic markers
- Combined use of CD38 & CD49d identifies highly aggressive disease and poor prognosis cases

Prognostic factors & Pathogenesis

